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Abstract. Motivated by the study of cosmological phase transitions, our understanding of the
formation of topological defects during spontaneous symmetry breaking and the associated non-
equilibrium field theory has recently changed. Experiments have been performed in superfluid
4He to test the new ideas involved. In particular, it has been observed that a vortex density is
seen immediately after pressure quenches from just below theλ transition. We discuss possible
interpretations of these vortices, conclude they are consistent with our ideas of vortex formation
and propose a modification of the original experiments.

1. Introduction and overview

The formation of topological defects is generic to many physical systems, for example,
superfluid4He and3He, superconductors and certain grand-unified theories which may be
relevant to the early universe. The dynamics of vortex formation in all of these systems
is intrinsically non-equilibrium due to the symmetry-breaking phase transition involved but
despite their variety they can all be described by some form of field theory and their
physical behaviour is very similar. Clearly there is some general feature of the behaviour
of quantum fields out of equilibrium which is causing the universality of this behaviour.
Such systems therefore provide a good arena for the study of non-equilibrium field theory,
both experimentally and theoretically, since the defect density formed provides a good
experimental test of the underlying field theory.

Here we are concerned with an experiment designed to test our ideas of what determines
the defect density initially formed immediately aftersecond-ordersymmetry-breaking phase
transitions. Themechanism, sometimes called the Kibble mechanism, whereby topological
defects, and vortices in particular, are formed [1] is understood and believed to be correct. It
is not entirely certain, however, what sets the scale in this mechanism and thus determines
the defect density immediately after the transition, although various scenarios have been
proposed. It was originally thought that the defect density was determined when the system
had cooled sufficiently far below the transition that thermal fluctuations were no longer
important [2]. In other words it was thought that the string network was ‘frozen in’ at a
temperature, the Ginzburg temperature, when there was no longer sufficient thermal energy
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around for the field to fluctuate out of topologically stable configurations like strings. A
criterion based on temperature cannot be wholly reliable because non-equilibrium physics is
involved in the phase transition. An alternative, called the Zurek scenario [3], was suggested
in which, due to the critical slowing down involved in second-order transitions, the field
is unable to keep up with the quench during an adiabatic period of evolution around the
transition. The length scale of the initial vortex network is then the correlation length of the
field when it first comes back into equilibrium below the transition, which in this scenario is
equal to the correlation length when the field went out of equilibrium above the transition.

An experiment, which we will refer to as the Lancaster experiment, designed to
distinguish between these two alternative scenarios has been performed in superfluid4He [4].
Preliminary results indicate the Zurek scenario to be correct, at least within its domain of
applicability. There are, however, still some controversies and unresolved issues concerning
whether or not the defect density might not perhaps have been formed by some means
considered more conventional in condensed matter physics. In particular, there is an
unexplained observation of vorticity after quenches from below the superfluid orλ transition.
One of our aims is to explain this and thereby clarify the interpretation of the experiment.
The experiment will then give us insight into the non-equilibrium behaviour of scalar fields
during symmetry-breaking phase transitions.

2. The formation of vortices

Here we are interested solely in vortex production during second-order transitions which
break aU(1) symmetry and produce vortices, as in superfluid4He [5]. While there is no
particularly good field theoretical model for superfluid4He, to perform calculations we later
assume a particular model [6] which exhibits all the generic features of aU(1) symmetry-
breaking phase transition in which vortices are formed. We will also limit ourselves to the
case of phase transitions sufficiently rapid that the Zurek scenario can be expected to be
reasonably accurate.

The mechanism by which vortices are formed during such transitions is well
understood [1]. In the symmetry-broken phase, above the phase transition, the order
parameter is zero. As the transition is driven, by somehow removing energy from the
system, the field begins to notice the central hill of the Mexican hat symmetry-breaking
potential. Thus, the field tends to assume non-zero values and to increase in magnitude
until it reaches its vacuum expectation value. There is no reason, however, for it to acquire
the same phase everywhere and one therefore expects to have a patchwork of regions with
differing phases. If on going round a loop in space which encloses several of these patches,
the phase changes by a non-zero multiple of 2π , then it follows that the field must vanish
at least once within the loop and therefore that there must be at least one vortex passing
through the loop. Thus defects are formed between regions of differing phase.

The question of what determines the initial vortex density, however, is less clear-cut.
How many defects are formed must depend on the length scale over which the phase varies,
or, roughly speaking, on the size of the domains of approximately constant phase. Amongst
cosmologists, it was previously thought [2] that the relevant domain size was the thermal
equilibrium coherence length of the field at the Ginzburg temperature,TG. This is defined
to be the temperature above which there is a significant probability for a thermal fluctuation
of the field on a coherence length scale to unwind a defect by crossing the centre of the
Mexican hat potential. In other words,

ξ31V/kTG ≈ 1
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where1V is the difference in free-energy density between the true and false vacua. The
idea was that above this temperature any strings would be unwound by thermal fluctuations
and only when the system cooled below this temperature could defects become quasi-stable
or ‘frozen in’.

This argument is now believed to be wrong. The phase transition and the associated
production of defects is an intrinsically non-equilibrium process, so it is incorrect to compute
the defect density using the equilibrium field correlation length; indeed, it is strictly speaking
not even possible to talk of a well defined temperature. Even were it possible always to
define temperature, the Ginzburg temperature would not be relevant†. The physical meaning
of TG for the vortices is that this is the temperature above which they become rough: the
thermal fluctuations in the vortex positions become larger than the vortex width. It is not
correct to argue, however, as has often been done, that above this temperature strings can
fluctuate in and out of existence. AboveTG, strings will start to wiggle randomly on small
scales, and very small loops may appear and disappear, but a long string is unlikely to
fluctuate into or out of existence as this would require a fluctuation on a scale of several
coherence lengths. The small loops have very short lifetimes and would not normally
survive long enough to be seen. In other words it is only coherent fluctuations on scales
larger than the coherence scale of the field which are long-lived.

What is really needed is a truly non-equilibrium approach to the calculation of the defect
density. In general, this is a difficult problem. However, in the case of a rapidly quenched
second-order phase transition, the Zurek scenario, it is thought possible to make an estimate
of the defect density produced comparatively simply [3]. The current understanding of this
scenario is as follows.

In cosmological systems, there is a bound on the possible size of phase-correlated
domains due to causality. A domain obviously cannot be larger than a horizon-sized volume
and if one assumes on dimensional grounds that the defect density is roughly the reciprocal
of the domain size squared, then this gives a lower bound on the defect density produced.
In condensed matter systems, there is often an equivalent causal horizon which stems from
the fact that correlations in the order parameter are not only causally bounded in principle
by the speed of light, but in practice also by the speed at which interactions propagate in
the system concerned. This is the basis of Zurek’s estimate of the vortex density in the
Lancaster experiment in4He and also of our work here.

Consider, for the sake of example, a condensed matter system like superfluid4He,
which starts in thermal equilibrium above the critical temperature and then undergoes a
uniform temperature quench into the superfluid symmetry-broken phase. In real experiments
a pressure quench is usually involved as it is difficult to produce uniform temperature
quenches. For pedagogical clarity, however, we will consider first a temperature quench
and only later show how to deal with a pressure quench. As the temperature is lowered
and the phase transition proceeds, initially the relaxation rate of the field is greater than the
rate at which the transition is being driven and the order parameter is able to keep up with
the quench to maintain a roughly equilibrium configuration. It is therefore possible to talk
about the temperature of the system during this early part of its evolution and also, since
the system is almost in thermal equilibrium, to calculate the correlation length of the field
as it increases early in the transition.

As the second-order transition is approached, however, for all modes of the order
parameter field there will come a point during the transition when the relaxation of the

† The problem of trying to describe intrinsically non-equilibrium phenomena such as phase transitions, without
using equilibrium concepts such as an effective potential, is very generic. For further comments see [7].
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order parameter is not fast enough to keep up with the quench. This effect is particularly
prominent during second-order transitions due to the critical slowing down of the low
momentum modes of the field. For sufficiently rapid quenches, all modes of the scalar field
will go out of equilibrium almost simultaneously and one can think of the field configuration
at this instant being frozen in until at some stage below the transition the relaxation rate
of the order parameter is again greater than the rate at which the transition is being driven.
During this adiabatic phase of the transition, the dynamics will be roughly isentropic. The
domain structure for the phase of the scalar field which gives rise to defects will then be that
when the field configuration is frozen in so the defect density is calculated by finding the
correlation length when the scalar field first goes out of equilibrium. In reality of course,
modes do not go out of equilibrium instantaneously. Nevertheless, under the circumstances
where the Zurek scenario is intended to be applied, this model seems to give a reasonably
accurate estimate [4].

The Lancaster experiment in4He discussed below uses a pressure rather than a
temperature quench to induce the phase transition. This situation is experimentally simpler
in that it avoids the difficulty of trying to induce a uniform temperature quench. We can
assume that the process starts from an equilibrium state just above or just belowTc, and
there is a rapid pressure quench from there to a state well away from theλ-transition at the
lower pressure. In the spirit of the Zurek scenario it then seems reasonable to assume that
the equilibrium configuration of the field at the original temperature and pressure is simply
frozen in when the field goes out of equilibrium and hence determines the defect density
measured.

3. The Lancaster experiment and its interpretation

There have been three experiments relevant to the study of non-equilibrium field theory
in defect formation. The first involved a temperature-driven first-order phase transition in
nematic liquid crystals [8] and was primarily intended to demonstrate the analogy between
the behaviour of defect networks in nematics long after the phase transition when the
symmetry has been broken almost everywhere and the scaling of cosmic string networks.
Although it also had some relevance to the consideration of defect formation, it suffered
from the experimental problem that it is difficult to produce a uniform temperature quench
in a nematic over more than a few correlation volumes. The second experiment, performed
in Lancaster [4], was specifically designed to test the Zurek scenario and exploit the analogy
between a hypothetical grand-unified scale symmetry-breaking transition producing cosmic
strings in the early universe and theλ transition in liquid 4He. Although this second
experiment is inherently far more difficult, preliminary results seem to vindicate the Zurek
scenario, subject to various caveats discussed below. The third and most recent experiment
[9], involving superfluid3He, also appears to vindicate the Zurek scenario.

The Lancaster experiment, which is shown schematically in figure 1, may be summarized
as follows. A 10−3 kg isotropically pure sample of liquid4He is held at about 2 K in abronze
bellows a few centimetres in length. Both the pressure and temperature of the sample are
recorded and the vortex density is measured indirectly by the attenuation of second sound
between a heater–bolometer pair 4 mm apart. The bellows is compressed and the sample
allowed to reach thermal equilibrium before being released and allowed to expand by 4 mm
in a period of roughly 3 ms. Since the speed of first sound, which carries information about
pressure and therefore the progress of the transition, is so much greater than that of second
sound, which is related to the relaxation rate of the scalar field, it is possible to induce the
phase transition simultaneously over many causally disconnected regions.
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Figure 1. The Lancaster experiment (schematic—not to scale): a, phosphor-bronze bellows;
b, bolometer; c, heater; d, isotropically pure sample of4He; e, sample filling tube.

After the pressure quench, the vortex density produced will decay over a period of a
few seconds at a rate [10, 11, 18]

dL

dt
= −χ2

h̄

mHe
L2

where the Vinen parameterχ2 is a dimensionless constant and it has been assumed that
vortex creation due to the non-conservative interaction between the normal fluid and vortices
already present is not significant. Although the whole apparatus vibrates for a few tens of
milliseconds after the quench, thus initially swamping the electronic detection apparatus,
and the decay of such a vortex density is rapid, using the defect attenuation of second sound,
which travels at a few metres a second in the regime concerned, there is time to measure
the decreasing vortex density before equilibrium is reached and the attenuation becomes
constant.

There are several problems with this experiment, most obviously the effects of turbulence
introduced by the walls of the bellows and the capillary used to fill the cell, the latter
possibly being the more serious effect. Also, it is difficult to repeat exactly the same run
many times as the precise isentrope followed during the quench can only be determined
retrospectively. Although a pressure quench induced by allowing the bellows to expand
produces a very uniform quench, the vibrations of the bellows mean that the electronics
of the heater–bolometer system are swamped by noise for about 40 ms. It has also been
commented that it is very difficult to prepare a sample of superfluid helium-4 without any
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vorticity and that it is therefore not entirely clear what is causing the vorticity.
Regardless of the problems, however, the results are as follows. For quenches from

above the lambda transition, the expected attenuation of the second sound signal is seen.
Although at very early times after the transition, the electronics are swamped by spurious
signals due to the vibration of the apparatus, it is straightforward to extrapolate although
unfortunately only to a limit on the defect density formed of

n > 1013 m−2

where n is the vortex line density. The Zurek prediction is close to this limit. These
results do allow us at least to determine that the Ginzburg temperature is not relevant. The
Ginzburg temperature lies far below the final state to which the system is quenched, about
half a degree Kelvin below the critical temperature, and cannot therefore be relevant to the
formation of defects. The Zurek prediction is seemingly very good, but the presence of
vorticity after quenches from just below theλ-transition casts doubt on the Zurek scenario
as the only significant means of vortex production.

Similar quenches starting from thermal equilibrium significantly below theλ-transition,
but still within the Ginzburg regime, do not show an equivalent attenuation and it is claimed
that this rules out vortex production by motion between the fluid and the corrugated walls of
the bellows [4]. If, however, the expansion which induces the pressure quench commences
within about 10 mK of the transition, some comparatively short-lived attenuationis seen
and indicates the presence of vortices although at a lower density than that produced by
quenches through theλ-transition. It is this vorticity which concerns us here.

4. Quenches from belowTλ

Clearly the defects which are observed after quenches starting from below the phase
transition are not formed by the Kibble mechanism since the symmetry is already broken
in the initial state. This forces us to question whether the vorticity created during quenches
from above the phase transition is due to the Kibble mechanism or whether there is some
additional means of forming defects which contributes to the vorticity created in transitions
from both above and below the phase transition. The most obvious idea is to attribute the
subcritical vortices to thermal fluctuations in the order parameter. In other words, so close
to the phase transition the thermal defect density is sufficiently high that these defects live
through the quench to be seen in the Lancaster experiment. The fact that such vortices
would be almost all in the form of small coherence sized loops is irrelevant as they will all
still attenuate second sound. Let us therefore estimate this thermal defect density. The first
guess would therefore be that, although with a quench from a point already below the phase
transition critical slowing down becomes less significant as the transition proceeds, rather
than more important as was the case with the original Zurek scenario, for sufficiently fast
quenches, the thermal vortex density is frozen in and ends up being the observed density.
For more realistic quenches at slower rates, the system will be better able to keep up with
the quench and will therefore end up closer to the perfect equilibrium situation with fewer
vortices than would be predicted by this freezing-in argument. In other words, applying the
Zurek scenario to quenches either from above or below the transition gives an upper limit
on the vortex density.

In order to compute the density of vortices, we need some way to identify and count
configurations of the field which have non-zero winding number and constitute vortices. If
on going around a loop in space, the phase of the scalar field changes by some non-zero
integral multiple of 2π , then it is not possible for the field to be in the true vacuum state
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everywhere within the loop. There must be at least one point within the loop where the field
is in the false vacuum, that is where the field vanishes. This point can be thought of as the
centre of the string and is the only gauge-invariant value of the field. Thus, in any gauge,
the centre of a string must be a zero of the field. Although it is true that all strings have a
zero at their centre, it is not necessarily true that all zeros of the field are associated with
vortices. What is in fact required is the number density of zeros with large-scale winding
around them.

Halperin has suggested a method of computing the topological line densityρ(r) or
defect density [13, 14] defined by

ρ(r) =
∑

n

∫
ds

dRn

ds
δ3[r − Rn(s)]

where ds is the incremental length along the line of zerosRn(s) (n = 1, 2, . . .) and dRn/ds

is a unit vector pointing in the direction which corresponds to positive winding number.
Only winding numbersn = ±1 are considered. Higher winding numbers are understood as
describing multiple zeros. If dA is an incremental two-dimensional surface containing the
point r, whose normal is in thej th direction, thenρj (r) is the net density of strings or in
other words the density of stringsminus the density of antistrings on dA.

We shall only consider situations in which

〈ρj (r)〉 = 0.

That is, we assume equal likelihood of a string or an antistring passing through an
infinitesimal area. It follows that, in terms of the zeros of8(r) = 81(r) + i82(r), ρi(r)

can be written as

ρi(r) = δ2[8(r)]εijk∂j81(r)∂k82(r)

whereδ2[8(r)] = δ[81(r)]δ[82(r)]. The coefficient of theδ-function in this expression is
the Jacobian of the transformation from line zeros to field zeros. While the above expression
is very good insofar as it counts only objects with winding which are genuinely defects, it
is not always the easiest thing to calculate. In thermal equilibrium, however, the gradient
terms take on an average value and Halperin’s method is then entirely equivalent to counting
the thermal expectation of the number of zeros as follows.

In our simplified method, which applies only to thermal equilibrium when the structure
of the vortices is known, we count all the zeros of a smoothed field on a particular surface,
regardless of sign. In thermal equilibrium at a temperatureT below the phase transition,
the expected number density of defects passing through a circular loop of radiusR will be

〈n〉 = 1

πR2
〈number of zeros ofφ〉

where the angular brackets denote a quantum mechanical and thermal average which must
ultimately be computed using some field theory describing4He.

One advantage of considering the zeros of|φ|2 is that this is a manifestly gauge-invariant
quantity. To count the zeros, we look for regions where|φ|2 is within some specified range
of zero, namely|φ| 6 η(T )/σ , whereη(T ) is the vacuum expectation value of the field in
the broken phase—we may call this the region of hot phase. Ultimately we take the limit
σ → ∞. For small values ofr, an individual vortex is decribed by

|φ(r)| ≈ η(T )r/ξ(T )

where 1/ξ(T ) is the temperature-dependent mass of the scalar particle which can later be
calculated from the action [6]. Hence, assuming an isotropic distribution of the thermal
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string and averaging over the possible orientations of such string, which give different areas
of intersection with the disc of radiusR, the area within which the hot-phase condition is
satisfied around a single vortex is

Astring = 2πξ2

σ 2

where the factor of two comes from the angular averaging process. It follows that

〈n〉 = 1

πR2

〈area in hot phase〉
Astring

.

To find the area in the hot phase, we use a Gaussian window function
exp[−σ 2|φ|2/η2(T )]. Thus the expected number density of zeros is

〈n〉 = 1

πR2
lim

σ→∞
σ 2

πξ2(T )

〈 ∫
loop

d2x exp

(−σ 2|φ|2
η2(T )

) 〉
= 1

πξ2(T )
lim

σ→∞

〈
σ 2 exp

(−σ 2|φ(0)|2
η2(T )

)〉
since〈|φ|2〉 is translationally invariant.

Actually, we are not interested in all zeros. Small-scale fluctuations may lead to the
appearance of several short-lived zeros within a particular vortex. To eliminate over-
counting, we will smoothφ on a scale comparable to the thermal coherence length. Indeed,
the assumed behaviour of the field near a zero is correct only if the field is smoothed. Thus
we avoid counting two zeros within a string width of each other as more than one string.
We do this by replacing|φ(0)|2 with∫ β

0
dτ

∫
d3x

∫ β

0
dτ ′

∫
d3y φ∗(x)f (x)δ(τ )φ(y)f (y)δ(τ ′) (1)

where

f (x) =
(

1

2πζ 2

)3/2

exp

(−|x|2
2ζ 2

)
.

Hereζ is the length scale on which the field is smoothed. It is necessary to have a very good
physical motivation for the choice of this scale. Later, it will be chosen to be of the order of
the thermal correlation lengthξ(T ). It need nota priori be equal to it, however. Sincef (x)

is strongly peaked within a thermal coherence length of the origin but still non-singular, this
technique has the additional advantage of eliminating unphysical divergences in the thermal
and quantum mechanical averages. On scales smaller than a coherence length, the quantum
fluctuations will dominate over the thermal. In other words, on such scales the Heisenberg
uncertainty principle is producing a large population of virtual defects which would cause
a divergence in the number density without a cut-off. This is very similar to a population
of virtual photons round an electron, although it is more obvious if one uses a dual theory
of the transition in which the quanta are the vortices instead of the usual field theory where
the quanta are related to helium atoms.

The number density of vortices can therefore be found by calculating the expected
number of zeros of the scalar field on a hypothetical flat circular disc. This is close to the
experimental procedure, where the defect density is measured by the attenuation of second
sound, which is attenuated by any region of symmetry-unbroken phase. It should be noted
that this method will not in itself give any information about the length distribution of the
vortices.
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Assuming that the smoothed scalar field does not vary very much over length scales
comparable with the range of the pair potentialV (x), which experimentally is of the
order of the typical atomic separation, we are able to use an action with the local
form

S[φ] =
∫ β

0
dτ

∫
d3x φ∗(x)

[
− 1

2m
∇2 − µ + ∂

∂τ
+ λ|φ(x)|2

]
φ(x) (2)

where λ = Ṽ (0) and we set ¯h = 1. SI units will be restored later in order to
facilitate a comparison with experiment. Also, the term which looks like a chemical
potential, µ, is defined so thatµ = µ0 + V (0)/2 where µ0 is the genuine chemical
potential of the helium atoms. This may be deduced from many-particle quantum
mechanics with the sole additional approximation that the interactions may be represented
locally. This may not be a particularly good approximation, however, since the
helium atoms have a finite size and separation of the order of a fewÅngstroms,
not much less than a typical coherence length of the field, thus placing a limit on
how local the interaction can be. Other condensed matter systems, such as superfluid
3He, do not suffer from this problem. They do, however, exhibit a variety of
defects which makes calculation significantly more complicated if no more difficult in
principle.

5. Calculation of the thermal density

Consider first the calculation of the vortex density in thermal equilibrium in the symmetry-
broken phase. Below the temperatures at which the phase transition actually occurs, we
may expand the fieldφ about a particular point on its vacuum manifold

√
2φ = η(T ) + A(x) + iB(x).

Let us for the moment assume that we may use mean-field theory, and so rewrite the
combinations ofA andB thus:

A3 ≈ 3〈A2〉A
A4 ≈ 6〈A2〉A2 − 3〈A2〉2

A2B2 ≈ 〈A2〉B2 + A2〈B2〉 − 〈A2〉〈B2〉
AB2 ≈ A〈B2〉

where quantities such as〈A2〉 are later to be computed self-consistently. It is quite reasonable
to object to this in that the region of interest is well within the Ginzburg regime in4He, in
other words less than half a degree Kelvin away from the transition. This region is defined
to be precisely the region in which thermal fluctuations are important and mean-field theory
is known to be a poor approximation in this case [15]. However, mean-field theory will give
at least qualitatively the right behaviour and is unlikely to be inaccurate bymanyorders of
magnitude. It turns out that this is sufficient for our purposes.

We may now use a path integral method to compute the number density of zeros.
The integrand of the path integral contains the exponential factor from (1), with|φ(0)|2
replaced by (1), as well as the exponential of the action (2). The integral factorizes, in the
form ∫

DA exp{−S[A]}
∫

DB exp{−S[B]} = IAIB (3)
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where

S[A] =
∫ β

0
dτ

∫
d3x

∫ β

0
dτ ′

∫
d3y

[
σ 2

2η2
(η2 + A(x)A(y) + 2ηA(y))f (x)f (y)δ(τ )δ(τ ′)

+A(x)

2

(
− 1

2m
∇2 + ∂

∂τ
+ C2

)
δ3(x − y)δ(τ − τ ′)A(y)

]
−

∫ β

0
dτ

∫
d3x C1A(x)

and

S[B] =
∫ β

0
dτ

∫
d3x

∫ β

0
dτ ′

∫
d3y

[
σ 2

2η2
(B(x)B(y))f (x)f (y)δ(τ )δ(τ ′)

+B(x)

2

(
− 1

2m
∇2 + ∂

∂τ
+ C3

)
δ3(x − y)δ(τ − τ ′)B(y)

]
where the constants,C1, C2 andC3 are defined as

C1 = λη[η2 + 3〈A2〉 + 〈B2〉] − µη

C2 = λ

2
[3η2 + 3〈A2〉 + 〈B2〉] − µ

2

C3 = λ

2
[η2 + 〈A2〉 + 3〈B2〉] − µ

2
.

These path integrals are of a standard well defined Gaussian type and since the non-
perturbative physics is already in our equations, it does not matter that we expand
about a particular point on the vacuum manifold. Before proceeding to do the path
integrals, however, let us first consider the self-consistent calculation of the coefficients
C1, C2 and C3, or equivalently of〈A2〉 and 〈B2〉. To do this, we exploit the fact that
the real scalar fieldsA and B must have a null expectation value. ViewingC1A as
a term in the potential for theA field, it will be seen that the only way to achieve
〈A〉 = 0 self-consistently is to imposeC1 ≡ 0. This then enables us to calculate
C2 = λη2.

We also know thatB is a Goldstone mode, which implies thatC3 = 0. An interesting
corollary of the fact thatC1 and C3 both vanish is that〈A2〉 = 〈B2〉. Physically, this
means that when both modes have zero effective mass at the lambda point, the equipartition
theorem forces them to have the same average energy.

The result of this determination is to greatly simplify theA andB integrals. The path
integrals may now be evaluated directly as they are both Gaussian. We will normalize both
by dividing by similar integrals with the parameterσ set to zero, thus obtaining the actual
number density of vortices. Quantities in whichσ = 0 will be denoted by a zero subscript.

Consider first theB integral. This is of the form

IB =
∫

DB exp(− 1
2BKB) = (detK)−1/2 (4)

where we have adopted the integration convention that spatial and Euclidean time integrals
are now implicit on adjacent fields and operators and

K(x, τ ; y, τ ′) = σ 2

η2
f (x)f (y)δ(τ )δ(τ ′) +

(
− 1

2m
∇2 + ∂

∂τ

)
δ3(x − y)δ(τ − τ ′).

The Fourier transform of this,

K̃(p, q) = σ 2

η2
f̃ (p)f̃ (q) +

( |p|2
2m

+ ip0

)
(2π)3δ3(p − q)βδp0,q0
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allows us to compute the ratioIB/IB,0. This gives(
IB

IB,0

)−2

= det

(
K

K0

)
= exp

∞∑
n=1

(−1)n

n
Tr[K−1

0 (K − K0)]
n

= exp
∞∑

n=1

(−1)n

n

(
σ 2

η2

∫
d3p

(2π)3

1

β

∞∑
r=−∞

|f̃ (p)|2
|p|2/2m + 2π ir/β

)n

= 1 + σ 2

βη2

∞∑
r=−∞

∫
d3p

(2π)3

|f̃ (p)|2
|p|2/2m + 2π ir/β

.

Using the known result

2x

π

∞∑
n=1

1

x2 + n2
= coth(πx) − 1

πx

we may rewrite the sum to give

IB

IB,0
=

(
1 + σ 2D0

η2

)−1/2

where

D0 = 1

2

∫
d3p

(2π)3
|f̃ (p)|2 coth

( |p|2
4mT

)
with

f̃ (p) = exp

(−ζ 2|p|2
2

)
.

If ζ 2 � 1/mT , we obtain

IB

IB,0
≈

(
1 + σ 2mT

2π3/2η2ζ

)−1/2

.

The corresponding integral for theA field is slightly more complicated and of the form

IA =
∫

DA exp{− 1
2AKA − bA − 1

2σ 2}
= [detK]−1/2 exp( 1

2bK−1b − 1
2σ 2) (5)

where again there is implicit integration on adjacent fields and operators and

K(x, τ ; y, τ ′) = σ 2

η2
f (x)f (y)δ(τ )δ(τ ′) +

(
− 1

2m
∇2 + ∂

∂τ
+ λη2

)
δ3(x − y)δ(τ − τ ′)

b(x, τ ) = σ 2f (x)δ(τ )

η
.

The required result is

IA

IA,0
=

[
det

(
K

K0

)]−1/2

exp( 1
2bK−1b − 1

2σ 2).

The determinental factor follows as for theB integral:

det

(
K

K0

)
= 1 + σ 2

2η2

∫
d3p

(2π)3
|f̃ (p)|2 coth

[ |p|2
4mT

+ λη2

2T

]
.
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The exponential factor involves more extensive manipulations:

bK−1b = σ 2f

η

(
K−1

0 − σ 2f K−1
0 f

η2 + σ 2f K−1
0 f

K−1
0

)
σ 2f

η

= σ 4D

η2 + σ 2D

where

D = f K−1
0 f = 1

2

∫
d3p

(2π)3
|f̃ (p)|2 coth

[ |p|2
4mT

+ λη2

2T

]
.

Substituting this into the expressions for the normalizedA integral above yields

IA

IA,0
=

(
1 + σ 2D

η2

)−1/2

exp

[ −η2σ 2

2(η2 + σ 2D)

]
.

Combining both of the factors (5) and (4) into (3) gives the final expression for the
number density of vortices passing through a unit area at temperatureT as

〈n〉 = lim
σ→∞

σ 2

2πξ2(T )

(
1 + σ 2D0

η2

)−1/2 (
1 + σ 2D

η2

)−1/2

exp

[ −η2σ 2

2(η2 + σ 2D)

]
.

On taking the limit, we obtain the ultimate result

〈n〉 = η2(T )

2πξ2(T )(D0D)1/2
exp

(−η2(T )

D

)
. (6)

The integrals inD andD0 do not have any closed analytic form but are trivial numerically.
However, if the temperature is large in the sense thatT � 1/2mξ2 or in other words,
T � µ = λη2, which is true well within the region of interest, the Ginzburg regime, then
(6) reduces to the approximate form

〈n〉 = η2(T )ζ

πξ2(T )mT
exp

(−η2(T )ζ

mT

)
. (7)

This result depends strongly on the smoothing scaleζ . Conventionally in quantum field
theory, one expects first to regulate an apparently divergent result by introducing a cut-off
scale and then to show that the physically observable quantity is not dependent on this scale
by renormalizing. In the current context, however, the physically relevant quantity should
depend on a cut-off for two reasons. Firstly there is an intrinsic cut-off in the problem due to
the discrete nature of the superfluid. Clearly, it is not sensible to talk about superfluid flow
forming a vortex on scales smaller than this. In addition, however, we are only interested in
coherent flows of the superfluid which are sufficiently long-lived to be seen by, for example,
scattering experiments like that involving second sound described above. In other words
we are only interested in flows of the superfluid on scales larger than the coherence length.
There will indeed be fluctuations on scales smaller than this, which have winding number
and zeros, but they are not relevant to the Lancaster experiment as this sees vortices only
on longer time-scales. This is easiest to understand in terms of a classical analogy with a
hurricane. Like a quantum vortex in superfluid4He, a hurricane is a large-scale coherent
motion of a fluid. One can clearly not talk about vortex or hurricane-like motions on scales
less than the size of the particles making up the air. There will, however, be small-scale
eddies on scales less than the large-scale coherent rotation of the whole hurricane. When
counting hurricanes, however, it would not be considered even vaguely sensible to include
the small-scale, short-lived eddies within the main hurricane. For this reason, we choose
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our smoothing scaleζ to be the thermal coherence length in our theory,ξ(T ). On restoring
the factors of the Boltzmann and Planck constants, this leaves the following expression for
the thermal vortex density:

〈n〉 = 1

πξ2

η2(T )ξ(T )

kBmT
exp

(−η2(T )ξ(T )

kBmT

)
. (8)

This is not surprising: the energy of a correlation-sized loop of string is of orderη2ξ/m,
so the exponent here is essentially the expected Boltzmann factor.

However, the above calculation of the defect density depended crucially on the use
of mean-field theory to decouple the Goldstone and Higgs modes of the scalar field and
to force the integrals into Gaussian form. Although this is perfectly valid well below the
transition, outside the Ginzburg regime, as we have already noted, it is not applicable to
the main region of interest near theλ point. This is the major problem with our method
of calculation. It will turn out, however, that even with the most optimistic assumptions
concerning the superfluid density and coherence length, that the thermal defect density is too
small by at least a few and possibly by many orders of magnitude to be the sole explanation
for the vorticity observed after subcritical quenches. Mean-field theory is therefore sufficient
for our purpose.

As a somewhat academic point we could, in principle, try to use the renormalization
group to extrapolate into the region of interest. In the current context, however, it is not
entirely clear how to go about applying these techniques. Physically, one expects that the
form of the result (7) is unlikely to change discontinuously on reaching the Ginzburg regime
and is likely always to be of the form

〈n〉 = η2(T )

πξ2(T )
exp

(−η2(T )

〈A2〉f

)
〈A2〉−1/2

f 〈B2〉−1/2
f

but with different expressions for〈A2〉f = D and 〈B2〉f = D0. One might therefore try
to merely replace the coherence length and order parameter with renormalization group
improved values.

In this context, a very interesting point emerges from (7) if we setζ = ξ(T ) and consider
the limit asT → Tc. In mean-field theory,η2ξ ∝ ε1/2, whereε is the reduced temperature
ε = 1 − T/Tc, so the number of vortices per correlation area would tend rather rapidly to
zero asT → Tc. On the other hand, in the renormalization group,η2ξ ∝ ε2β−ν . But 2β
is actually very nearly equal toν (they would be exactly equal if the correlation-function
critical exponentζ were zero, or equivalently ifδ = 5, in the usual notation). The best
estimate is 2β − ν ≈ 0.03. This means that until we get extremely close to the critical
point, the number of vortices per correlation volume would remain of order one.

It is, however, difficult to decide what is the most honest, consistent thing to do. Let
us make the obvious assumption that the vortex density seen immediately after subcritical
quenches is just the frozen-in thermal density. For quenches from within a few mK of the
transition, starting at a relative temperature ofε = 1 − T/Tc = 10−3, the thermal vortex
line density calculated in the above mean-field scheme is of order〈n〉 ≈ 105 m−2. Even
closer to the transition atε = 10−4 the density is still only about 1010 m−2. While this
is consistent in the sense that mean-field theory has been used throughout, there is some
justification for trying to use renormalization group improved values.

The other obvious thing to try is to simply substitute experimental values for the required
quantities [16–18], using the molar volume as a function of pressure and the superfluid
fraction to extract the vacuum expectation value of the order parameter and tabulated values
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for the coherence length. Even with optimistic values for these parameters, the thermal
defect density in the region of interest is still only of the order of 1010 m−2 at best.

One’s first thought is that perhaps the mean-field approximation is so bad in the regime
of interest, well above the Ginzburg temperature, as to severely underestimate the thermal
defect density. Although the mean-field approximation is certainly not good in the regime
of interest, it is hard to believe that it is in error by orders of magnitude, so our estimation
of the thermal density seems to rule out the thermal vortex population as the sole source
of vorticity from sub-lambda quenches. There are two possibilities, although these are not
mutually exclusive. Either the thermal density acts as a seed and is magnified in some way
or else there is some other source of vorticity.

6. Alternative explanations of the sub-critical vortex density

Let us first consider other sources of vorticity. The most likely source is the flows which
are generated during the pressure quench by either the walls of the bellows or the capillary
used to fill the bellows in the first place. The phosphor-bronze bellows are corrugated in
order to allow for the compression and subsequent release of the sample chamber which
produces the pressure quench. The capillary used to fill the sample chamber has to be long
to ensure thermal isolation and has a valve on the end furthest from the opening into the
sample. Thus during the pressure quench the column of fluid inside the capillary expands
and about 20% of its volume is forcibly squirted into the chamber [19].

An idea due to Zurek is as follows [20]. The difference in the line density of vortices
produced in quenches from very close to the transition and the density formed from slightly
further away from the transition might be due to the different energy cost of creating vortices.
It takes less energy to create a unit length of string near the transition since the vortex energy
per unit length decreases with the superfluid density. The nearer theλ-transition the system
is, the lower the superfluid density and hence the lower the tension of a vortex and the easier
it is to form a unit length of one. The line density of vortices created in this way would
then be proportional to the reciprocal of the superfluid density, or including logarithmic
terms [20]

〈ρsn〉stir ∝ (− ln(〈n〉stirξ
2))−1.

This ought to be testable by comparing subcritical quenches with differing starting points.
Since this argument does not depend in any way on the microphysics of superfluids, it is
very robust but consequently it also fails to provide any insight into the details of what is
actually going on and makes it difficult to ascertain whether the Zurek scenario is still valid
in this regime.

Given the presence of such flows during the pressure quench, however, one might
speculate that they interact with the thermal density of vortices which is already present.
The phenomenology of this is well understood. Also, the interaction of a superflow with
thermally generated vortices is well known in the context of the thermal generation of
turbulence in a superfluid and is known by the acronym ‘ILF’ after Iordanskii, Langer and
Fisher [21]. The presence of a filling capillary in the middle of the bellows is guaranteed
to generate a superflow during the rapid pressure decrease of the quench and this capillary
is probably far worse than the walls in terms of flow generation. Although the walls, in
principle, allow vorticity to be generated by their motion relative to the superfluid, the rapid
decompression of the superfluid in the capillary during the quench causes a superflow from
the capillary.
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Let us assume that our estimate of the thermal density of vortices just below the transition
is reasonably accurate, at least to within a factor of ten or so. Since they are a thermal
equilibrium population, these vortices will almost all be in the form of small coherence
length sized loops and will move through the superfluid with a velocity given by [21]

vi = κ

4πR

[
ln

(
8R

a

)
− 1

2

]
whereκ = h/m ≈ 10−7 m2 s−1, R is the radius of a loop of string anda is the vortex
core parameter first introduced by Feynman. When the decompression occurs, there will
be superflows within the bellows. While the walls may perhaps not be terribly effective
in generating these, it is guaranteed that superfluid will get forced out of the end of the
filling capillary producing a superflow directly through the middle of the thermal vortex
population. One can estimatevs, the velocity of the superflow out of the capillary, from
the change in pressure,1P and the density of the liquid helium inside the capillary.

V 1P = 1
2(ρV )v2

s .

For the change in pressure of about 106 Pa actually used this gives a velocity of roughly the
critical superflow or slightly below, so it is possible that vorticity is generated by supercritical
flows. However, since vorticity is not generated unless the quenches are sufficiently close to
the transition, it is safe to assume that supercritical flows alone are not responsible for vortex
formation and that the only possible explanation for the vorticity formed during quenches
through the transition is that already described.

Even if the flow is not supercritical, however, the effect of a superflow on a population
of vortex loops is to expand loops greater than a certain size with an appropriate velocity
relative to the superflow according to

dR

dt
=

[
γ

ρsκ

]
(vs − vi).

Thus loops with sufficiently large radii that their velocity is less than the velocity of the
superflow and also oriented so that some component of their velocity is parallel to the
superflow, or roughly half the loops if the distribution is isotropic, will grow in the flow.
This could result in the magnification of the thermal vortex line density.

For a thermal population of vortex loops, however, one expects almost all of the loops
to be of a size roughly equal to the thermal coherence length. Sufficiently far from the
transition, the vortex core parametera, equal to the thermal coherence length, is only of
the order of 10−8 m and there will be almost no loops sufficiently large, and therefore
sufficiently slow in comparison with the superflow, to be expanded. Near the transition,
however, the coherence length grows increasingly large and thus the velocity of the typical
coherence sized loop becomes smaller and smaller as one approaches the phase transition.
Sufficiently close to the transition, even coherence sized loops will have velocities slower
than the superflow and will be expanded.

Assuming that the number density of loops of a given length decays fairly steeply with
length, likel−5/2 or exponentially for example, it is a reasonable approximation to say that
almost all of the string is in coherence length sized loops. Also, the density of thermal
vortices is only significant near the transition. Thus, there will be almost no amplification
of the thermal density by the superflows in the fluid unless the initial subcritical temperature
is such that coherence sized loops move slower than the superflow velocity or in other words

κ

4πξ(T )
(ln(8) − 0.5) <

√
1P

ρ
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or alternatively

T

Tc
> 1 −

(
4πvsξ0

κ[ln 8 − 0.5]

)2

.

In this scenario one would expect a fairly sharp temperature above which quenches start to
produce significant vorticity as opposed to the simple stirring scenario in which one expects
a gradual logarithmic increase in the vorticity. Also, the fractional increase in the vortex
density or fractional amplification in this case is roughly

1n

n
≈ 1

R

dR

dt
1t ≈ B(vs − vi)

R
1t ≈ 1tvsε

1/2

ξ0

[
1 − κε1/2

10ξ0vs

]
whereε is the relative temperature 1−T/Tc andB ≈ γ /ρκ is a dimensionless parameter of
order 6 in the region of interest. Betweenε ≈ 10−3 andε ≈ 10−4, this amplification factor
changes by only a factor of

√
10, being of order 106 or 107. Using both experimental and

renormalization group improved values, the thermal seed density varies only slowly in the
regime of interest, although the density does vary by a factor of roughly 105 if mean-field
critical exponents are used. It might therefore be expected that one would see a well defined
temperature at which the amplification switches on.

In addition, if ILF is the dominant process, since conformal invariance demands that
there are no vortices actually at the transition, as is consistent with the mean-field calculation
above (7), there ought also to be an initial temperature above which no vorticity is observed
following the pressure quench. However, this temperature may turn out to be so close to
the critical temperature as to be unobservable.

7. Summary and conclusions

We have used an equilibrium finite temperature field theoretical description of superfluid
4He to predict the thermal density of vortex loops in the superfluid phase. This has been
used in an adiabatic approximation to predict the vortex density produced in the Lancaster
experiment for quenches from below theλ-transition. Although mean-field theory is a very
poor approximation in the region of interest, it is unlikely to be inaccurate by more than
a few orders of magnitude at most. Thus the fact that a mean-field theory estimate of the
thermal vortex density below the transition gives a value several orders of magnitude below
that observed implies that the vorticity observed is not simply the thermal population. Either
the thermal population is amplified in some way or there is some other significant form of
vorticity production. Here we have argued that the thermal density could be amplified by
a superflow produced from the capillary which is used to fill the experimental cell. This is
entirely analogous to the intrinsic thermal nucleation of defects known as the ILF process.
The experimental signature of this scenario would be a sharp cut-off temperature such that
quenches starting below this produce too little vorticity to be observed. There should also
be an upper cut-off although this might be impossible to observe.

There are, however, problems. Firstly although it is difficult to come up with an
alternative scenario with such copious vortex production, there are experimental problems
which make it difficult to entirely eliminate other methods of vortex production. Secondly
there is the theoretical problem that even if mean-field theory were a good approximation,
the field theoretical description of4He is inaccurate since the coherence length is never very
much greater than the interatomic spacing.
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